FRACTURES AND PHYSICAL THERAPY MANAGEMENT

HELEN BUCHANAN, SPT

PHYT 734 Fall 2019

Adapted from previous presentation by Jonathan Valbuena, PT
OBJECTIVES

1. Understand an overview of bone tissue, risk factors for fracture, and general healing times.

2. Be able to describe various fractures by using specific terminology based on MOI, classification, location, fracture pattern, and position/alignment.

3. Appreciate signs/symptoms of possible fractures and the Ottawa Rules for Knee and Ankle suspected fractures.

4. Be able to describe the Salter-Harris Classification system for epiphyseal plate injuries.

5. Be able to apply principles of fracture management for periods of immobilization and post-immobilization in clinical practice.
BRIEF OVERVIEW OF BONE

- **Composition**
 - Fiber = Type I collagen
 - Ground Substance = GAGs, hyaluronic acid, calcium salts
 - Cells = Osteoblasts and Osteoclasts

- **Types of Bone**
 - Cortical
 - Cancellous

Image from OpenStax
HOW DO BONES BREAK?

- Trauma
- Fatigue or Stress
- Pathology
BONE AND STRESS-STRAIN

Figures from Turner
RISK FACTORS FOR FRACTURE

- Sudden impact
 - Ex: trauma, accidents, assault
- Osteoporosis
 - Women > Men
- History of falls
 - Especially with increased age, low BMI, and low levels of PA
- Repetitive stress
 - Repeated microtrauma
- Pathology
 - Abnormal fragile bone from neoplastic, poor health, or disease condition
ASSOCIATED FRACTURE DAMAGE

- Edema
- Ecchymosis
- Hemorrhage
- Ruptured tendons/ligaments
- Severed nerves
- Damaged blood vessels
- Injury to organs and muscle/soft tissues
- Joint dislocation
BUT *HOW* DID A BONE BREAK?

STUDY MEDICINE THEY SAID

IT WILL BE FUN THEY SAID
MECHANISM OF INJURY

- **Speed of Loading**
 - ↑ Speed of loading = ↑ ultimate strength and stiffness of bone
 - ↑ Energy release at failure
 - = More potential for soft tissue and other associated damage
MECHANISM OF INJURY

- Frequency of Loading
 - ↑ Frequency associated with ↓ ultimate strength of tissue
 - = Cumulative microtrauma leads to failure
DEFINING AND DESCRIBING FRACTURES

- Classification
- Location
- Fracture Patterns/Types
- Position/Alignment
IMAGING ABC’s

- A = alignment
- B = bones
- C = cartilage space
- s = soft tissue

Image from Radiopaedia
CLASSIFICATION

- Open
- Closed

Image from Lex Medicus
LOCATION

- Specific bone
- Location within a bone
 - Proximal
 - Distal
FRACTURE PATTERNS/ TYPES

- Transverse
- Linear
- Oblique
- Spiral
- Comminuted
- Avulsion
- Greenstick
- Torus/Buckle
- Stress
- Pathologic
POSITION AND ALIGNMENT

- Non-displaced
- Superior/Inferior displacement
- Anterior/Posterior displacement
- Medial/Lateral displacement
- Distracted
- Rotation
POSITION AND ALIGNMENT

Nondisplaced

Medial displacement

Lateral displacement

Distracted

Overriding with posterior and superior displacement

Distracted and rotated laterally

Copyright © F. A. Davis Company. All rights reserved.

Image from Kisner et al^2
Convention description:
- Distal segment position in relation to proximal segment
- Angulation named by direction of angle apex
- Describe by classification, location, fracture line, and position/alignment
NAME THAT FRACTURE!

Images from Radiopaedia

Lateral view
NAME THAT FRACTURE!

Images from Radiopaedia¹

AP view

Lateral view
NAME THAT FRACTURE!

Images from Jon Hackel

PA view

Lateral view
NAME THAT FRACTURE!

Images from Radiopaedia

AP view

Lateral view
WHO NEEDS A BREAK…?
<table>
<thead>
<tr>
<th>Force</th>
<th>Effect on Bone</th>
<th>Type of Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending</td>
<td>Long bone bends causing failure on convex side of bend</td>
<td>Transverse or oblique fracture; Greenstick fracture in children</td>
</tr>
<tr>
<td>Twisting (torsional)</td>
<td>Spiral tension failure in long bone</td>
<td>Spiral fracture</td>
</tr>
<tr>
<td>Traction</td>
<td>Tension failure from pull of ligament or muscle</td>
<td>Avulsion fracture</td>
</tr>
<tr>
<td>Crushing (compression)</td>
<td>Usually in cancellous bone</td>
<td>Compression fracture, torus (buckle) fracture in children</td>
</tr>
<tr>
<td>Repetitive Microtrauma</td>
<td>Small crack in bone</td>
<td>Fatigue or stress fracture</td>
</tr>
<tr>
<td>Normal force on abnormal bone</td>
<td>E.g. osteoporosis, bony tumor, or other diseased bone</td>
<td>Pathological fracture</td>
</tr>
</tbody>
</table>
SIGNS/SYMPTOMS OF POSSIBLE FRACTURE

- Swelling, deformity, or abnormal movement
 - *May or may not be visibly obvious!*
- Sharp, localized tenderness at site
- Localized pain aggravated by movement and/or weight-bearing
- Muscle guarding with PROM
- Decreased functional use of segment
- History of MOI
 - Fall, direct blow, twisting injury, or other trauma
OTTAWA ANKLE RULE

- A decision aid for excluding fractures of the ankle and midfoot
- Accurate predictor\(^3\)
 - 36% reduction in unnecessary radiographs
OTTAWA ANKLE RULE

- Applies to ages 2 to 55
- Tender over posterior 6cm OR tip of the medial or lateral malleolus
- Base of 5th metatarsal
- Navicular
- Inability to bear weight (4 steps) BOTH immediately AND in the ED
 - Limping is OK

Adapted From:
Paul Mintken PT, DPT, OCS
Denise Stelzner PT, MBA
University of Colorado PT
A series of ankle x-ray films is required only if there is any pain in the malleolar zone and any of these findings:

- Bone tenderness at A
- Bone tenderness at B
- Inability to bear weight both immediately and in emergency department

A series of ankle x-ray films is required only if there is any pain in the mid-foot zone and any of these findings:

- Bone tenderness at C
- Bone tenderness at D
- Inability to bear weight both immediately and in emergency department
OTTAWA KNEE RULE

- To determine whether a knee injury needs an X-ray
- Accurate predictor?
 - 26% reduction in unnecessary radiographs\(^4\)
OTTAWA KNEE RULE

Radiographs indicated if any of the 5 are present:

- Age 55 or older
- Isolated tenderness over patella
- Tenderness over fibular head
- Unable to flex knee $>90^\circ$
- Unable to bear weight immediately or in the ED for 4 steps
EPIPHYSEAL PLATE = GROWTH PLATE

- Area of growth in long bone
- Between epiphysis and metaphysis of long bones

Image from LLRS
SALTER-HARRIS FRACTURE CLASSIFICATION

- **Specific to fractures at the epiphyseal plate**
- **5 categories based on damage**

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A transverse fracture through the growth plate, sparing the epiphysis and metaphysis.</td>
</tr>
<tr>
<td>II</td>
<td>A fracture through the growth plate and the metaphysis, with its fragment adhering to the growth plate.</td>
</tr>
<tr>
<td>III</td>
<td>A fracture through the growth plate and the epiphysis.</td>
</tr>
<tr>
<td>IV</td>
<td>A fracture through the growth plate, metaphysis, and epiphysis.</td>
</tr>
<tr>
<td>V</td>
<td>The growth plate is compressed, without any fracture of the epiphysis or the metaphysis.</td>
</tr>
</tbody>
</table>

Figure from Kuleta-Bosak et al.
SALTER-HARRIS TYPE I

- Shearing injury
- Epiphysis is completely separated from metaphysis
- Rarely manipulated, requires immobilization
- Good prognosis

Figure from Kuleta-Bosak et al.
SALTER-HARRIS TYPE II

- Shearing and bending injury
- Epiphysis and growth plate partially separated from metaphysis, fracture through part of metaphysis
- Most common
- Manipulated and immobilized
- Good prognosis

Figure from Kuleta-Bosak et al
SALTER-HARRIS TYPE III

- Fracture through epiphysis, separates part of epiphysis and growth plate from metaphysis
- Rare
- Typically requires surgical reduction

Figure from Kuleta-Bosak et al
SALTER-HARRIS TYPE IV

- Fracture through epiphysis and into metaphysis crossing growth plate
- Surgery required
- Potential for premature closing of growth plate if not perfectly aligned

Figure from Kuleta-Bosak et al
SALTER-HARRIS TYPE V

- Epiphysis crushed into metaphysis, crushing the growth plate
- Poor prognosis, stunted growth
- Difficult to diagnose, needs to be treated with NWB immediately

Figure from Kuleta-Bosak et al.
Varies with age, location and type of fracture, displacement, surgical involvement, soft tissue damage, and vascularity around the repair

- Children = 4-6 weeks
- Adolescents = 6-8 weeks
- Adults = 10-18 weeks

Smoking and NSAIDs negatively affect bone healing!
STAGES OF FRACTURE HEALING

- Inflammatory
 - Begins immediately after bone injury with formation of fibrin clot or hematoma

- Repair
 - Begins a few days after bone injury
 - “soft callus” formation for 6 weeks
 - “hard callus” formation for 12 weeks

- Remodeling
 - Can continue for months or years after bone injury
POTENTIAL COMPLICATIONS

- Swelling
- Fat embolism
- Skin ulceration, vascular compromise
- Nerve injury
- Infection
- Delayed union or Malunion
- Refracture
- Problems with fixation devices
PERIOD OF IMMOBILIZATION

- Bone requires immobilization for healing
 - But connective tissue weakens, articular cartilage degrades, muscle atrophies, at risk for contracture, and slowed circulation
- Early “non-destructive” motion is ideal but usually not feasible unless an internal fixation device is present to stabilize
IMMOBILIZATION: PT MANAGEMENT

- Be on alert for complications
- General exercises for uninvolved portions of the body to minimize soft tissue degradation
 - Especially important for bed rest with traction!
- If LE involved, educate in alternative modes of mobility within WBing limitations
 - Crutches, walker, WC – clinical judgment is key
EXTERNAL FIXATION

Images from Schepers T, Rammelt

N
IMMOBILIZATION: PT SUMMARY

<table>
<thead>
<tr>
<th>Plan of Care</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Educate the patient</td>
<td>1. Teach functional adaptations and safe ambulation, bed mobility</td>
</tr>
<tr>
<td>2. Decrease effects of inflammation during acute period</td>
<td>2. Ice, elevation</td>
</tr>
<tr>
<td>3. Decrease effects of immobilization</td>
<td>3. Intermittent muscle setting, active ROM to joints above and below immobilized region</td>
</tr>
<tr>
<td>4. If patient is confined to bed, maintain ROM and strength in major muscle groups</td>
<td>4. ROM activities to all areas not immobilized, resistive exercises to major muscle groups not immobilized especially in preparation for future ambulation</td>
</tr>
</tbody>
</table>
POST-IMMOBILIZATION

Following immobilization, many impairments likely:

- Decreased ROM, joint play, muscle flexibility
- Muscle atrophy and poor endurance
- Painful movement early on
- Inelastic scar tissue?
POST-IMMOBILIZATION: PT MANAGEMENT

- Consult physician for clinical vs. radiological healing expectations
- Match interventions to impairments
 - Joint mobilization
 - Muscle stretching, strengthening and endurance
 - PNF: proximal hold-relax and agonist-contraction
 - Functional activities
 - Scar tissue mobilization for soft tissue injuries
Plan of Care

1. Educate the patient
2. Provide protection until radiologically healed
3. Initiate active exercises
4. Increase joint and soft tissue mobility
5. Increase strength and muscle endurance
6. Improve cardiorespiratory fitness
Interventions

1. Inform patient of:
 a. Limitations
 b. Home exercises/Reinforce protection
2. PWB in LE injuries, non-stressful activities in UE injuries
3. Active ROM, gentle multi-angle isometrics
4. Joint play and muscle stretching
5. Resistive and repetitive exercises as ROM increases
6. Safe aerobic exercises that do not stress fracture site
ANY QUESTIONS?
REFERENCES

Original Presentation: Valbuena, J. Lower Extremity Fractures/TJR and Physical Therapy Management. October 22, 2018; Chapel Hill, NC.

1. Gross, M. Bone – Lectures I & II. Lecture presented as VoiceThread; created on July 11 and 13, 2008; Chapel Hill, NC.

A. https://openstax.org/books/anatomy-and-physiology/pages/6-3-bone-structure
B. https://www.wsj.com/articles/SB10001424127887323296504578396832875546130
D. https://barefootmeds.wordpress.com/2012/10/01/studying-skeleton/
H. https://radiopaedia.org/cases/tibia-fracture-importance-of-2-views?lang=us
I. https://radiopaedia.org/cases/oblique-tibial-fracture?lang=us
J. Guide Radiology Forearm Answers from Jon Hacke
L. Limb Lengthening and Reconstruction Society. Available at: https://llrs.org/information-for-patients/specific-conditions/growth-plate-arrest/
O. SNL Haunted Elevator. Available at: https://www.youtube.com/watch?v=rS00xWnqwvl